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Abstract.
Background: Alzheimer’s disease (AD) is the leading cause of dementia, with its prevalence increasing as the global
population ages. AD is a multifactorial and intricate neurodegenerative disease with pathological changes varying from
person to person. Because the mechanism of AD is highly controversial, effective treatments remain a distant prospect.
Currently, one of the most promising hypotheses posits mitochondrial dysfunction as an early event in AD diagnosis and a
potential therapeutic target.
Objective: Here, we adopted a systems medicine strategy to explore the mitochondria-related mechanisms of AD. Then, its
implications for discovering nutrients combatting the disease were demonstrated.
Methods: We employed conditional mutual information (CMI) to construct AD gene dependency networks. Furthermore,
the GeneRank algorithm was applied to prioritize the gene importance of AD patients and identify potential anti-AD nutrients
targeting crucial genes.
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Results: The results suggested that two highly interconnected networks of mitochondrial ribosomal proteins (MRPs) play
an important role in the regulation of AD pathology. The close association between mitochondrial ribosome dysfunction and
AD was identified. Additionally, we proposed seven nutrients with potential preventive and ameliorative effects on AD, five
of which have been supported by experimental reports.
Conclusions: Our study explored the important regulatory role of MRP genes in AD, which has significant implications for
AD prevention and treatment.
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INTRODUCTION

Alzheimer’s disease (AD) is considered one of
the most common causes of dementia [1], with
hallmark pathological features including amyloid
plaques containing amyloid-� (A�) and neurofib-
rillary tangles composed of hyperphosphorylated
tau proteins. Neuroimaging often reveals temporal
and medial parietal cortices accompanied by brain
atrophy, and reduced glucose utilization typically
manifests in in the posterior regions of the brain in
the early stages [2]. The current diagnostic criteria
for AD, proposed by the National Institute on Aging
and Alzheimer’s Association (NIA-AA), rely on the
observation of pathological markers during life or
after death [3]. A recent statistic shows that current
AD drug development is focused on the targets of
inflammation, amyloid, neurotransmitter receptors,
synaptic plasticity, tau pathology, oxidative and pro-
tein homeostasis/protein lesions [4]. However, the
safety and efficacy of these therapies remain contro-
versial [5]. In recent years, it has become apparent
that some changes in the aging process, such as
increased use of medications, decreased appetite,
and impaired nutrient absorption, can prevent older
adults from meeting their nutritional requirements.
This ultimately leads to malnutrition, which increases
the risk of frailty and reduces the quality of life [6].
Therefore, attention has been paid to the therapeu-
tic effects of nutrients in AD, thus reducing the side
effects of conventional medications. Recent studies
have highlighted the importance of improving the
intake of certain nutrients to slow the progression
of non-communicable diseases, including dementia
[7]. For example, recent studies have shown for the
first time that vitamin D receptor can regulate mito-
chondrial DNA transcription. In the human brain,
it can interact with mitochondrial transcription fac-
tor A, demonstrating its important role in energy
metabolism [8].

The slow progress in drug development for tradi-
tional targets prompted new perspectives to explore
the pathogenesis of AD. Mitochondria are mater-
nally inherited organelles with the primary role
of energy metabolism and signaling programmed
cell death through second messengers [9]. The
mitochondrial theory of aging suggests that aging-
associated accumulation of mitochondrial oxidative
damage and decreased repair efficiency lead to defi-
ciencies in cellular bioenergetics [10]. Recently,
researchers have identified mitochondrial dysfunc-
tion as a major deficiency contributing to the
pathophysiology of AD, referring to it as the “mito-
chondrial cascade hypothesis” [2]. Our previous work
further supports this theory by uncovering impor-
tant mitochondrion-associated genes involved in AD
pathological processes from a systems genetics per-
spective [11].

However, the mechanism of mitochondria in
AD pathogenesis remains largely unknown. Gene
dependency is a common phenomenon in biolog-
ical processes. For example, the activity of many
transcription factors that regulate their targets is
dependent on other regulators. Therefore, identify-
ing gene dependencies following phenotypic changes
can provide a better understanding of the biological
regulatory mechanisms of phenotypes. To address
this issue, several methods have been proposed to
construct Gene Regulatory Network (GRN) based
on gene expression data. However, these GRNs
can only represent static regulatory relationships
and cannot identify gene dependencies based on
phenotypic changes, which are crucial for us to inves-
tigate the biological mechanisms behind a specific
phenotype/disease [12]. In our previous work, we
proposed a regulatory network construction method
that can reveal the gene dependence during pheno-
typic changes. This strategy has been successfully
applied in breast cancer precision medicine [13, 14].
In this study, transcriptomic data from AD patients
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Fig. 1. The workflow of analysis procedure. Using transcriptomic data of AD patients and controls from ADNI (N = 711) and ROSMAP
(N = 410), we constructed gene dependency networks to analyze the mitochondrial mechanisms of AD. Gene dependency networks were first
constructed by conditional mutual information (CMI) calculation and permutation tests to identify gene-dependent pairs behind phenotypic
changes. We then used the GeneRank algorithm [15, 16] to calculate gene importance rankings for each AD patient based on gene expression
levels and gene dependencies. Based on the gene importance ranking results, we screened out nutrients targeting important genes for potential
preventive and therapeutic interventions in AD. ADNI, Alzheimer’s Disease Neuroimaging Initiative; ROSMAP, Religious Orders Study
and Rush Memory and Aging Project.

and controls were used to construct gene dependency
networks for dissecting the mitochondrial related
mechanisms in AD.

The gene dependency networks were first
constructed by calculating conditional mutual infor-
mation (CMI) and permutation tests to identify the
gene dependent pairs during the phenotypic changes.
The GeneRank [15, 16] algorithm was then used to
rank the gene importance ranking for each AD patient
based on gene expression levels and gene dependen-
cies. Based on the gene importance ranking results,
we screened out nutrients targeting important genes
as potential AD preventive and therapeutic interven-
tions. Figure 1 illustrates our analysis process.

MATERIAL AND METHODS

Study subjects

Transcriptome and phenotype data were obtained
from Alzheimer’s Disease Neuroimaging Initiative
(ADNI) and the Religious Orders Study and Rush
Memory and Aging Project (ROSMAP). ADNI is
a longitudinal, multicenter study, that has collected
multiple biomedical data from cognitively normal
elderly, mild cognitive impairment (MCI) individ-
uals, and AD patients since 2004. Resources are
available for exploring new clinical, imaging, genetic,
and biochemical biomarkers for the early diagnosis
and monitoring of AD [17].

ROSMAP consists of two projects, the Religious
Communities Study (ROS) and the Rush Memory
and Aging Project (MAP). The ROS project, initi-
ated by Rush University in 1994, is a comprehensive
longitudinal study that focuses on aging and AD.
The study recruited individuals from religious groups
for longitudinal clinical analysis and brain donation
[18]. MAP is a longitudinal epidemiological clin-
icopathology study of dementia and other chronic
diseases of aging. Since the study began in 1997, par-
ticipants undergo detailed annual clinical evaluations
and donate their brains, spinal cords, and muscles
after death [19].

The ADNI sample used in this study followed
the ADNI data use protocol (adni.loni.usc.edu/
wpcontent/uploads/how to apply/ADNI Acknowle
dgement List.pdf). The ROSMAP data used were
under the terms of the data use agreement of Rush
University Medical Center (RUMC). All data from
ROSMAP are available on the AMP-AD knowledge
portal. The data access requirements followed for
use can be found at https://adknowledgeportal.syna
pse.org/DataAccess/Instructions. All participants
provided written informed consent, autopsy consent,
and data use consent.

Data processing

Gene expression profiles of blood samples from
ADNI participants were provided by Bristol-Myers
Squibb (BMS). Gene expression measurements were
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Table 1
Basic Characteristics for participants in ADNI (N = 711) and ROSMAP (N = 410)

ADNI AD (n = 109) nonAD (n = 602) Diff (p)*

Sex (F/M) 39 F, 70 M 277 F, 325 M 0.048
Age, y (SD) 74.5 (7.63) 72.9 (6.93) 0.049
Education, y (SD) 15.9 (2.98) 16.1 (2.77) 0.626
ROSMAP AD (n = 145) nonAD (n = 265) Diff (p)*
Sex (F/M) 57 F, 88 M 103 F, 162M 0.93
Age, y (SD) 83.1 (6.28) 80.3 (6.87) <0.0001
MMSE (SD) 26.8 (3.79) 13.6 (8.65) <0.0001

AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ROSMAP, The Reli-
gious Orders Study/the Rush Memory and Aging Project; F, female; M, male; MMSE, Mini-Mental
Status Examination score; SD, standard deviation; Diff, statistical difference between AD and non-AD.
*p-values are calculated by Fisher’s exact tests (for sex) or two-sample t-tests (for age, education, and
MMSE).

performed on 811 ADNI participants in the ADNI
WGS cohort. The Affymetrix Human Genome U219
array (Affymetrix, Santa Clara, CA) was used for
expression profiling. For more information, please
see http://www.affymetrix.com. Peripheral blood
from each sample was collected using PAXgene tubes
and analyzed for RNA. The quantity and quality
of the extracted RNA were further assessed using
NanoDrop and PerkinElmer LabChip GX, respec-
tively. To ensure a balance of sample sex and trait,
all samples were randomly assigned to Affymetrix
Human Genome U219 array plates. In order to
ensure the balance of sample gender and traits, all
samples were randomly assigned to the Affymetrix
Human Genome U219 array plate. Subsequent steps
of hybridization, washing, staining, and scanning
were automatically completed using the Affymetrix
GeneTitan system. The Affymetrix HG U219 array
contained 530,467 probes for 49,293 transcripts.
Quality control was performed according to the
standard procedures of Affymetrix Expression Con-
sole software and Partek Genomic Suite 6.6. Raw
expression values were preprocessed with the RMA
(Robust Multi-chip Average) normalization method.
All Affymetrix U219 probe sets were annotated with
reference to GRCh37 (hg19). The final ADNI expres-
sion profile retained 14,868 genes.

Gene expression data for brain samples from Rush
University contained 490 samples with no duplicates
(syn3800853). Brain tissue RNA extraction was per-
formed using the Rneasy Lipid Tissue Kit (Qiagen,
Valencia, CA). Subsequent steps such as hybridiza-
tion were processed with an automated Scigene Little
Dipper process (Scigene, Sunnyvale, CA). Specific
experimental details of the data are described in the
study by Zhang et al. [20]. 410 samples with pheno-
typic information and passing quality control were

retained, each of which had expression information
for 19,306 genes. The basic characteristics of two
datasets are summarized in Table 1.

Construction of gene dependency network

We constructed gene-dependent networks for
ADNI and ROSMAP transcriptome data separately,
with the following process:

1. Gene expression levels of each gene in the
dataset and clinical information of all samples
were discretized. The final judgment of AD and
normal control (CN) depended on the patient’s
status at the time of the last sampling. Some of
the MCI patients who eventually converted to
AD were classified as AD phenotype (ADNI:
15, ROSMAP: 104). Only patients who were
eventually stable in MCI phenotype and nor-
mal were considered CN. For AD patients, we
set the phenotype to 1; if the patient was CN,
the phenotype was set to 0. For gene expression
levels, a gene was set to 1 if its expression in a
sample was higher than the median expression
level of that gene in all samples; otherwise, it
was set to 0.

2. To make the calculations more efficient and the
results more reliable, we only consider those
gene pairs that interact in the protein-protein
interaction (PPI) network as candidate depen-
dency pairs. The PPIs used in this study were
obtained from the latest STRING database [21].
Gene pairs with scores no less than 400 were
retained for subsequent analyses. For each can-
didate gene-dependent pair (gene A and gene
B), we set the expression levels of gene A and
gene B and the AD risk of all patients into a
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triad. The triads were sorted in ascending order
according to the expression level of gene B.

3. For genes and their interactions pairs co-
existing in gene expression data and PPI
network, the gene dependency of one gene
(gene A) with another gene (gene B) was char-
acterized by CMI. The calculation formula was
as follows:

CMI(Gene A; risk|Gene B) = Ehigh

(Gene A, risk) − Elow(Gene B, risk)

where Ehigh (Gene A, risk) is the mutual infor-
mation for AD patients with high expression
levels of Gene A and 35% of Gene B. Elow
(Gene A, risk) is the mutual information for AD
patients with low expression levels of Gene A
and 35% of Gene B. The mutual information
was calculated using the tool of Peng et al. [22].
For each candidate pair (A, B), we obtained
711 and 410 trios in the ADNI and ROSMAP
datasets in the form of (value of gene A, clini-
cal information, value of gene B), with each trio
representing one sample, respectively.

4. p-values for CMI were calculated for each gene
pair using a permutation test. First, we per-
formed a random permutation of the expression
levels of gene B to calculate random CMIs for
gene A and gene B. Then, the random per-
mutation was repeated 1000 times to obtain
1000 random CMIs, and these 1000 randomly
calculated CMIs were used as the null hypoth-
esis distribution. The actual CMI values in the
original hypothetical distribution were divided
by 1000 in order (descending order) as the
significance p-value of (A, B). Finally, all sig-
nificant gene dependency pairs (p-value<0.05)
were combined into the gene dependency net-
work. In the network, the nodes represent genes
and the directed edge (A−→B) represents the
clinical phenotypic mutual information of gene
A significantly dependent on gene B.

Mitochondria-related subnetwork extraction

To capture the significant portions of the whole
gene dependency network, Molecular Complex
Detection (MCODE) was utilized to extract the
densely connected regions in the network. To fur-
ther investigate the role of mitochondrial-nuclear
gene interaction mechanism in AD, we selected gene
pairs with gene A connectivity in the top 10% and

belonging to mitochondria-associated genes for sub-
sequent network analysis. MCODE is based on vertex
weighting of local neighborhood density and traver-
sal outward from locally dense nodes to isolate dense
regions according to given parameters. This algo-
rithm has the advantage over other graph clustering
methods of a directed model that allows fine-tuning
the clusters of interest without considering the rest
of the network, while examining the cluster inter-
connectivity associated with the regulatory network.
This method has demonstrated favorable outcomes
in the analysis of yeast protein interaction networks
[23].

The default parameters of MCODE were applied
in dividing the subnetwork: Node Score Cutoff: 0.2;
Haircut: true; Fluff: false; K-Core: 2; Max. Depth
from Seed: 100. Mitochondria-associated genes were
derived from our recent study [11], containing
mitochondrial localization genes (n = 1,474), mito-
chondrial epistasis-associated genes (n = 1,650) and
hub genes identified by weighted gene co-expression
network analysis (WGCNA) (n = 91).

Nodes importance ranking

After obtaining the gene dependency network. The
importance of all nodes were assessed. The selected
evaluation metric was Maximal Clique Centrality
(MCC), a newly proposed method that phenocopies
better performance than other methods in terms of
accuracy in predicting the basic proteins of the
yeast PPI network. The calculation formula is as
follows:

MCC(v) =
∑

C∈S(v)

(|C| − 1)!

where S(v) is the set of extremely large clusters con-
taining v, (|C| – 1)! is the product of all positive
integers less than |C|. If there is no edge between
neighbors of node v, MCC(v) is equal to its degree.
In this study, the TOP100 genes in MCC ranking were
selected as significant nodes for analysis.

Based on these significant nodes, PPI enrich-
ment analysis was performed using the following
databases: STRING [21], BioGrid [24], OmniPath
[25], and InWeb IM [26]. Only physical interactions
in STRING (physical score > 0.132) and BioGrid
were used. The generated network contains a sub-
set of proteins that form physical interactions with
at least one other member of the list. If the network
contained 3 to 500 proteins, the MCODE algorithm
was used to identify densely connected network com-
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ponents. Biological pathway and process enrichment
analysis was then applied independently to each
MCODE sub-network and the top three entries with
the most significant p-values were retained as the
functional descriptions of the corresponding subnet-
works.

Gene importance ranking and nutrient screening

The fundamental principle of drug therapy is the
use of drugs to work on disease driving genes, also
known as targets. Drugs with the same efficacy may
have distinct drug targets. Similarly, patients who
exhibit the same disease symptoms may also have dif-
ferent underlying risk factors, which can be reflected
by gene expression profiles. Therefore, it is essen-
tial to identify key genes for each patient based on
their gene expression data. The effect of a drug on a
specific individual patient can be inferred by testing
whether the drug can target the corresponding critical
gene(s) of the patient. Google developed PageRank
[15] to successfully rank web pages based on the
hyperlinks of all web pages in the Internet. Based on
PageRank, GeneRank [15, 16] can capture the net-
work topology of biological networks and the initial
importance of nodes in the network, ultimately pri-
oritizing important genes in biological systems. In
this study, gene dependency networks were applied
to reveal the interactions between genes. Afterwards,
a modified GeneRank algorithm was implemented
to prioritize the gene importance for each patient
[27].

The central concept of the GeneRank algorithm is
that the importance of a node in the network depends
on the importance of the nodes that point to it. The
equation of the algorithm is as follows:

rn
j = (1 − d) fj + d

N∑

i=1

wijr
n−1
i

degi

where, rn
j and rn−1

i are the scores of gene i after
n and n-1 iterations of calculation, respectively; fj

is the initial importance of gene j, which is set in
this study as the absolute value of the fold-change
value between the disease patient and the control sam-
ples; w is the linkage matrix constructed based on
the gene dependency network, if gene i depends on
gene j (there is an edge in the gene dependency net-
work pointing from i to j), then wij = 1 and wji = 1,
otherwise 0; degi describes how many nodes have
interaction with gene i (the out-degree of gene i);
N represents the number of genes in the network;

d (0 ≤ d<1) is a constant representing the weight of
gene dependency relationship in the calculation pro-
cess.

It can be seen from the formula that the importance
of vertex j depends on the value of two components:
the initial importance of the gene (the differential
expression value of gene i) and the importance value
of all vertices pointing to vertex j (the second term
on the right side of the formula). A larger d rep-
resents that the importance of the gene depends on
the gene-dependent relationship, and a smaller d rep-
resents that the importance of the gene depends on
the initial importance of the gene. In this study, d
was set to 0.5 and the algorithm was iterated to stop
when �<0.00001, where ε is the first order paramet-
ric number of |rn

i − rn−1
j |. With this calculation, the

importance of AD pathology-related genes can be
ranked for each individual.

After obtaining the gene importance ranking of AD
samples, statistical methods were used to see if the
target gene(s) of a candidate drug could targeted the
critical genes of the sample and predict the drug’s
effectiveness for a specific patient. Our study used
the Kolmogorov-Smirnov (KS) test, which measures
whether the elements in a set are significantly dis-
tributed in the upper or lower part of a given sequence.
If the target genes of the drug or combination of drugs
are predominantly distributed in the upper part of the
list of key genes in the patient, then this drug or com-
bination of drugs is considered to be more efficacious
in this patient. The smaller the p-value of the test
for the KS test, the more effective the drug is for
this patient. The drug efficacy prediction model for
a particular patient is constructed without the use of
class labels and without a training process. Nutrients
and targets information derived from the most recent
Drugbank database [28], which included 95 approved
nutrients.

Ethics approval and consent to participate

Usage of ADNI samples follows the data use
agreement at ADNI (https://adni.loni.usc.edu/data-
samples/access-data/#access data). Data from
ROSMAP were obtained under data use agreement
with Rush University Medical Center (RUMC). ROS
and MAP were approved by an Institutional Review
Board of RUMC. All participants gave written
informed consent, signed an Anatomic Gift Act, and
signed a repository consent allowing their data to be
shared.
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Table 2
Gene dependency network enrichment results

TOP10% ADNI-A ADNI-B ROSMAP-A ROSMAP-B

MT-located genes 2.90E-35 4.09E-13 2.90E-35 4.68E-40
MT-epistatic genes 0.98 4.26E-05 0.44 3.79E-09
WGCNA Hub genes 0.11 1.57E-08 0.48 0.16

The gene dependent pair (A, B) implies that the effect of gene B on the phenotype depends on gene
A. Hypergeometric enrichment tests revealed that either gene A or gene B in these combinations
were enriched to different kinds of mitochondria-associated genes as well as WGCNA hub genes
obtained from our previous study [11].

RESULTS

Establishment and evaluation of gene
dependency network

A pipeline for constructing gene dependency
networks was proposed in our previous work
and its efficacy was demonstrated in discovering
cancer-related prognostic genes [13]. In this study,
we applied this strategy to AD to uncover the
mitochondria-related gene-dependent relationships
in the AD pathogenesis. Gene dependency networks
were constructed based on transcriptome data from
ADNI and ROSMAP, respectively. After the permu-
tation test, there were 66,538 and 112,513 significant
gene dependent relationship pairs in ADNI and
ROSMAP, respectively. We selected the gene pairs
with gene A connectivity in the top 10% of the pairs
for subsequent analysis (Supplementary Table 1).
Hypergeometric enrichment tests revealed that either
gene A or gene B in these combinations were enriched
to different kinds of mitochondria-associated genes
as well as WGCNA hub genes obtained from our
previous study [11] (Table 2). Our results suggested
that mitochondrial-nuclear gene interactions play an
important regulatory role in AD pathogenesis.

Identification of mitochondria-related
subnetwork modules

To identify important subnetworks that were
closely related to mitochondria, the MCODE algo-
rithm were applied to cluster the whole gene
dependent network. Finally, seven subnetworks were
obtained for ADNI and 11 subnetworks were detected
for ROSMAP. Enrichment of the above three types of
mitochondrial genes in these subnetworks revealed
that cluster1 and cluster4 of ROSMAP were sig-
nificantly enriched to mitochondria-associated genes
(Hypergeometric Test, p = 0.017 and 0.049) (Supple-
mentary Table 2).

ROSMAP cluster1 (MRPS6, MTIF2, MRPL30,
MRPS12, MRPS18A, MRPS33, MRPL40, CHCHD1,
MRPL48, MRPL50, MRPL20, MRPS2) and cluster4
(NDUFS8, MRPL17, MRPL42, LRPPRC, DICER1,
MTIF3, MRPL12, MRPS15, AURKAIP1), which
were significantly enriched for mitochondrial genes,
were selected for GO enrichment. The results showed
that both modules were significantly enriched in
mitochondrial translation initiation and mitochon-
drial translation elongation processes. Most of the
genes in these modules belong to the MRP fam-
ily. CHCHD1 in cluster1 and AURKAIP1 in cluster4
are also newly identified MRP members (named
MRPS37 and MRPS38, respectively), as shown in
Fig. 2.

Analysis of critical nodes related to mitochondria

The MCC importance of nodes in all dependency
pairs with gene A connectivity in the top 10% and
belonging to mitochondria-related genes were cal-
culated. The nodes with the top 100 MCC scores
were selected for further exploration (Supplemen-
tary Table 3). To elucidate the biological functions of
these important nodes, the densely connected regions
in these nodes were extracted by MCODE and PPI
enrichment analysis. Six sub-networks were derived
from ADNI and seven sub-networks were extracted
from ROSMAP. For each subnetwork, we performed
biological function analysis separately and retained
the top three entries with the best p-value as the func-
tional description of the corresponding sub-networks.
Detailed results were shown in Fig. 3, Table 3, and
Supplementary Tables 4 and 5.

The biological functions involved in the ADNI
MCODE subnetworks can be summarized as:
mitochondrial ribosome translation-related func-
tions, platelet-derived growth factor/platelet-derived
growth factor receptor (PDGF/PDGFR) pathway,
positive regulation of peptidase activity, central
carbon metabolism in cancer, establishment of
proteins localized in mitochondria, and electron
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Fig. 2. GO analysis of mitochondrial significantly enriched subnetworks. A) cluster 1, B) cluster 4. ROSMAP cluster1 (MRPS6, MTIF2,
MRPL30, MRPS12, MRPS18A, MRPS33, MRPL40, CHCHD1, MRPL48, MRPL50, MRPL20, MRPS2) and cluster4 (NDUFS8, MRPL17,
MRPL42, LRPPRC, DICER1, MTIF3, MRPL12, MRPS15, AURKAIP1), which were significantly enriched for mitochondrial genes, were
selected for GO enrichment. The results showed that both modules were significantly enriched in mitochondrial translation initiation and
mitochondrial translation elongation processes.

transport chain involving mitochondrial ATP,
etc. The biological processes of the MCODE
subnetworks for ROSMAP can be described
as: mitochondrial translation-related functions,
ERBB1/PDGFR/MTOR pathway, CNS neuronal
development, neurotrophic factor signaling pathway,
production of precursor metabolites and energy,
maturation of protein E, and some signaling and
stimulus response processes. It is worth noting
that MCODE 1 of both ADNI and ROSMAP were
associated with mitochondrial translation-related
functions, demonstrating the vital role of these
identified MRP genes in AD pathology.

In addition, these modules were also enriched
in PDGFR-related pathways (ADNI: MCODE 2,
ROSAMP: MCODE 2). PDGF and its receptor
PDGFR are expressed in a variety of cell types,
including brain cells such as neuronal progeni-
tors, neurons, astrocytes, and oligodendrocytes. The
PDGF family comprises five functional subunits.
They are A, B, C, and D, which are linked by disul-

fide bonds of polypeptide chains to form homo-
or heterodimers, namely PDGF-AA, PDGF-AB,
PDGF-BB, PDGF-CC, and PDGF-DD. These growth
factors promote their biological on-cell functions by
binding to their cognate receptors, namely PDGFR-
� and PDGFR-�, through receptor tyrosine kinase
activity. Emerging evidence suggests that PDGF-
mediated signaling regulates various functions of the
central nervous system (CNS), such as neurogenesis,
cell survival, synaptogenesis, regulation of ligand-
gated ion channels, and the development of specific
types of neurons [29]. Interestingly, PDGF/PDFGR
signaling can trigger opposite effects in the CNS,
depending on the cell type and activating stimulus,
and is associated with the pathogenesis of several
neurodegenerative diseases [30].

Nutrients discovery for Alzheimer’s disease

Traditional drugs used to treat AD often come with
great side effects. Tacrine, the first and most effec-
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Fig. 3. Biological function and pathway analysis of MCC TOP100 nodes. A) ADNI, B) ROSMAP. The nodes with the TOP100 MCC scores were selected for further exploration (Supplementary
Table 3). To resolve the biological functions of these important nodes, the densely connected regions in these nodes were extracted by MCODE and PPI enrichment analysis. Six sub-networks
were derived from ADNI and seven sub-networks were extracted from ROSMAP. For each subnetwork we performed biological function analysis separately and retained the top three entries
with the best p-value as the functional description of the corresponding sub-networks. The biological functions involved in the ADNI MCODE subnetworks can be summarized as: mitochondrial
ribosome translation-related, platelet-derived growth factor/platelet-derived growth factor receptor (PDGF/PDGFR) pathway, positive regulation of peptidase activity, central carbon metabolism
in cancer, establishment of proteins localized in mitochondria, and electron transport chain involving mitochondrial ATP, etc. The biological processes of the MCODE subnetworks for ROSMAP
can be described as: mitochondrial translation-related, ERBB1/PDGFR/MTOR pathway, CNS neuronal development, neurotrophic factor signaling pathway, production of precursor metabolites
and energy, maturation of protein E, and some signaling and stimulus response processes.
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Table 3
Biological function and pathway analysis of MCODE components

MCODE GO Description Log10(P)

ADNI MCC TOP100
MCODE 1 hsa03010 Ribosome –11.2
MCODE 1 CORUM:320 55 S ribosome, mitochondrial –11.1
MCODE 1 R-HSA-5368286 Mitochondrial translation initiation –10.7
MCODE 2 M186 PID PDGFRB PATHWAY –35.4
MCODE 2 M164 PID ERBB1 DOWNSTREAM PATHWAY –30.8
MCODE 2 WP2037 Prolactin signaling pathway –26.9
MCODE 3 GO:0010952 positive regulation of peptidase activity –13.3
MCODE 3 GO:0045862 positive regulation of proteolysis –12.9
MCODE 3 GO:0043280 positive regulation of cysteine-type endopeptidase

activity involved in apoptotic process
–12.5

MCODE 4 hsa05230 Central carbon metabolism in cancer –11.1
MCODE 4 WP4674 Head and neck squamous cell carcinoma –8.3
MCODE 4 hsa05215 Prostate cancer –7.9
MCODE 5 GO:0072655 establishment of protein localization to mitochondrion –11.9
MCODE 5 GO:0070585 protein localization to mitochondrion –11.6
MCODE 5 R-HSA-5205685 PINK1-PRKN Mediated Mitophagy –11.1
MCODE 6 GO:0019646 aerobic electron transport chain –10.4
MCODE 6 GO:0042773 ATP synthesis coupled electron transport –10.3
MCODE 6 GO:0042775 mitochondrial ATP synthesis coupled electron transport –10.3

ROSMAP MCC TOP100
MCODE 1 R-HSA-5368287 Mitochondrial translation –100.0
MCODE 1 R-HSA-5368286 Mitochondrial translation initiation –97.8
MCODE 1 R-HSA-5389840 Mitochondrial translation elongation –93.9
MCODE 2 M164 PID ERBB1 DOWNSTREAM PATHWAY –20.5
MCODE 2 M186 PID PDGFRB PATHWAY –19.7
MCODE 2 M121 PID MTOR 4PATHWAY –19.1
MCODE 3 WP3286 Copper homeostasis –9.2
MCODE 3 GO:0021954 central nervous system neuron development –8.5
MCODE 3 WP3932 Focal adhesion: PI3K-Akt-mTOR-signaling pathway –8.2
MCODE 4 hsa05220 Chronic myeloid leukemia –18.3
MCODE 4 hsa04722 Neurotrophin signaling pathway –16.9
MCODE 4 WP2374 Oncostatin M signaling pathway –15.2
MCODE 5 hsa01200 Carbon metabolism –6.3
MCODE 5 GO:0006091 generation of precursor metabolites and energy –4.7
MCODE 6 R-HSA-9694493 Maturation of protein E –12.1
MCODE 6 R-HSA-9683683 Maturation of protein E –12.1
MCODE 6 R-HSA-9706377 FLT3 signaling by CBL mutants –11.1
MCODE 7 R-HSA-2262752 Cellular responses to stress –4.8
MCODE 7 R-HSA-8953897 Cellular responses to stimuli –4.8

For the TOP100 significant nodes in the MCC scoring, protein-protein interaction enrichment analysis was performed using the
following databases: STRING, BioGrid, OmniPath, InWeb IM. Only physical interactions from STRING (physical score > 0.132)
and BioGrid were used. The generated protein interaction network contains a subset of proteins that have physical interactions
with other members (at least one) of the analyzed gene lists. When the resulting network contains 3-500 proteins, the MCODE
algorithm was used to identify locally densely connected clusters in the whole. Biological functional enrichment analysis was
performed for each MCODE sub-network identified. The top three results in terms of p-value significance were retained as the
functional description of that sub-network.

tive acetylcholinesterase inhibitor among the five
FDA-approved AD drugs, was found to be highly
hepatotoxic and caused definite acute liver injury.
It was eventually withdrawn from the market due
to excessive adverse effects and risks outweighing
the benefits [31]. To mitigate the toxic effects of
AD medication, we sought to identify nutrients with
potential therapeutic effects on AD. Based on the
constructed gene dependency network, ADNI and

ROSMAP individuals were ranked for gene impor-
tance by GeneRank. Then, 95 nutrients and their
targets collected in DrugBank were predicted for
drug efficiency. The mean KS p-values were calcu-
lated for all individuals in each database to determine
the overall drug efficiency of the nutrients, and
nutrients targeting important genes were selected.
Finally, seven nutrients were identified in ADNI
and 69 nutrients in ROSMAP at a threshold of p-
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value less than 0.05. Specifically, the seven nutrients
screened based on ADNI samples were also con-
sistently identified in ROSMAP. The names of all
the significant nutrients were listed in Supplementary
Table 6.

These seven nutrients are listed in descending order
according to the predicted drug effectiveness: Nicoti-
namide Adenine Dinucleotide (NADH), Adenosine
Phosphate, Adenosine Triphosphate (ATP), Pro-
line (Pro), Alfacalcidol, Glutathione (GSH), and
L-Glutamine. Moreover, NADH was predicted to be
the most effective nutrient in both the ADNI and
ROSMAP samples.

DISCUSSION

AD is a neurodegenerative disease that arises from
a complex interplay of various processes. The under-
lying mechanisms of AD remain unclear, and all
potential drugs have failed to varying degrees in
human trials. Several hypotheses have been proposed
to explain the cause of AD. Currently, one of the
most promising hypotheses considers mitochondrial
dysfunction as an early event in AD development
and a potential therapeutic target. Our study provides
innovative insights into the mitochondria-related reg-
ulatory relationships in AD pathogenesis from a
gene-dependent perspective. Based on the AD gene
dependency network, the nutrients targeting impor-
tant genes in patients were further screened by the
personalized GeneRank algorithm and KS test. Our
study provides novel ideas for understanding AD
mitochondrial pathogenesis and personalized preven-
tion and treatment.

The identification of important nodes related to
mitochondria highlighted the significant role of
MRPs. Mammalian MRPs are encoded by nuclear
genes, synthesized in the cytoplasm and then trans-
ported into the mitochondria for assembly into
mitoribosomes. MRPs not only play a role in
mitochondrial oxidative phosphorylation, but also
participate in regulating cellular state as apoptosis-
inducing factors. Abnormal expression of MRPs
leads to mitochondrial metabolic disorders, cellu-
lar dysfunction, etc. Many studies have shown that
abnormal expression of MRPs is closely related to
aging and various tumors. For example, specific
downregulation of MRPL2 in the retina was identified
in aged APP/PS1 mice at 8 months [32]. Epigenetic
mapping of mice revealed that the methylation level
of MRPL4 increased with aging [33]. Houtkooper

et al. identified mitochondrial ribosomal protein S5
(MRPS5) and other mitochondrial ribosomal pro-
teins (MRPs) as metabolic and lifespan regulators
using mouse population genetics and RNAi technol-
ogy in Caenorhabditiselegans (C. elegans). MRPs
knockdown triggers mitochondrial protein imbal-
ance, reduces mitochondrial respiration, and activates
the mitochondrial unfolded protein response [34].
Taken together, we suggested that these sets of
MRPs genes in cluster1 and cluster4 may have inter-
dependent relationships in the AD mitochondrial
mechanism and jointly regulate the AD pathological
process.

In addition, the analysis for the top 100 impor-
tant genes of MCC ranking revealed that MCODE
2 of both ADNI and ROSMAP were enriched to
PDFGR-related pathways. Since A� accumulation
starts decades before the onset of AD symptoms,
it has been proposed that biomarkers in plasma
and cerebrospinal fluid could predict AD onset long
before the neurodegenerative process begins, thus
facilitating AD prevention. Ray et al. identified
PDGF-BB as one of the most important biomarkers
associated with AD through a study of 18 differ-
ent plasma markers [35]. Decreased levels of plasma
PDGF-BB correlates with the degree of cognitive
impairment observed in AD patients [36]. There-
fore, PDGF-BB can be used to identify individuals
with MCI in advance. In addition, PDGF-BB was
observed to bind to sorL1, sorCS1, and sorCS3 in
late-onset AD. This process in turn affected their
interactions and downstream signaling from PDGFR-
�, which may ultimately lead to pericyte dysfunction
and/or degeneration [37]. In summary, a number of
studies have now confirmed the role of PDGF-BB
in AD and its significance as a therapeutic tar-
get. However, no study has yet suggested that this
pathway is associated with mitochondria. Our study
proposed two collections of gene-dependent relation-
ships between the PDGF pathway and mitochondria
associated with the pathogenesis of AD, opening
new doors for the understanding of mitochondrial
mechanisms in AD. Targeting multiple genes simul-
taneously in these subnetworks may improve AD
drug efficacy.

Numerous studies have demonstrated the protec-
tive role of multiple micronutrients and macronu-
trients in the prevention and treatment of AD.
However, the effectiveness of nutrient is difficult to
estimate due to the complexity of the disease and
the individual-specific pathological manifestations
of AD. Therefore, based on the constructed gene
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dependency network, we further ranked the genetic
importance of each patient sample by the GeneR-
ank algorithm [15, 16] and then used the KS test to
screen out nutrients with potential therapeutic effects
on AD. The process can also be used for precision
medicine and drug efficiency prediction for AD or
other diseases. Five of the seven nutrients we pre-
dicted to have the highest overall efficiency have
been shown to improve AD-related symptoms and
are closely related to mitochondria-related pathways
such as energy metabolism or oxidative stress. Com-
bining all ADNI and ROSMAP samples, NADH
was considered to be the most effective nutrient.
NADH is an antioxidant coenzyme present in every
living cell in the body primarily involved in the
metabolism of substances and energy in cells. It is
produced in the citric acid cycle in glycolysis and cel-
lular respiration and acts as a carrier of biohydrogen
and an electron donor, transferring energy to supply
ATP synthesis through an oxidative phosphoryla-
tion process in the inner mitochondrial membrane.
Therefore, NADH is also known as mitochondrial
element [38]. As a derivative of vitamin B3, NADH
enhances brain cognition and health by producing
ATP energy and increasing dopamine levels. NADH
also plays various roles in regulating mitochondrial
energy metabolism, calcium homeostasis, brain gene
expression, and anti-apoptosis. It has been used in the
treatment of several neurological disorders, including
AD [38, 39].

In addition, GSH has been recognized as a natu-
ral antioxidant that protects the brain from damage.
GSH levels are significantly reduced in the hippocam-
pus of MCI and AD patients compared to healthy
elderly subjects. Therefore, GSH supplementation
is necessary to enhance cognitive performance in
patients with MCI and AD [40]. Glutamine is the
most abundant amino acid in human blood, which
is necessary and critical for many cellular functions.
In the brain, glutamine is primarily produced by
astrocytes that express glutamine synthetase. Many
pathological factors known to contribute to AD can
directly reduce glutamine synthetase activity, includ-
ing A� deposition, chronic inflammation, hypoxia,
ischemia/reperfusion, and oxidative stress. Indeed,
glutamine metabolism is impaired in AD patients,
and glutamine deficiency can impede critical cellular
functions such as mitochondrial energy production,
DNA damage response, apoptosis, and autophagy.
Therefore, glutamine supplementation may help
prevent or delay aging-induced degenerative dis-
eases [41]. These results illustrated the effectiveness

of gene-dependent networks and demonstrated the
important role of mitochondria in the diagno-
sis and management of AD. These nutrients may
improve AD by enhancing mitochondrial func-
tion. The remaining ones, proline and alfacalcidol,
while not currently supported by the literature, also
deserve further investigation. It is worth noting that
there is a gap between the therapeutic potential
of these nutrients and their clinical effectiveness.
Extensive follow-up experiments are needed to val-
idate them before they can be used in clinical
treatment.

Several limitations might exist in our study. First,
we used gene expression data for all European
samples. Therefore, the results may differ among
different races. Second, we only considered gene
expression data when calculating the mutual informa-
tion between genes because it best reflects the effect
of the current physiological state of the sample on
the genes. If other types of data can be considered,
such as the genome, epigenome, metabolome, etc., it
may be possible to analyze gene dependencies more
comprehensively. In addition, there are many contro-
versial issues with the prioritization of web pages.
For example, because the most well-known mecha-
nisms or the genes involved in them tend to recur
in many studies, there is a risk of creating artificial
importance based on the visual effects of the Inter-
net. Such results may highlight the importance of
certain research hotspot genes. Finally, the specific
mechanisms of our proposed mitochondria-related
important regulatory genes and the efficacy of the
candidate nutrients need further experimental valida-
tion.

In conclusion, we explored the mitochondria-
related mechanisms in AD through systematic
transcriptomic analysis. By constructing gene depen-
dency networks, we identified two sub-networks with
important regulatory roles in mitochondrial transcrip-
tional translation. The importance of MRPs (e.g.,
MRPL17, MRPL42) in AD was demonstrated. Node
importance analysis identified subnetworks related to
PDGF pathway and mitochondria. Drugs that simul-
taneously target multiple genes in these subnetworks
may have better therapeutic efficacy. Further, we used
the GeneRank algorithm to rank the gene impor-
tance of each patient sample. Finally, we proposed
seven most effective and safe nutrients by examin-
ing whether the drugs target critical genes. Our study
suggests the important role of MRPs in the regulatory
process of AD. Targeting certain MRPs genes may be
a promising therapeutic strategy for AD.
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